
You get to drop 4 quizzes. Quiz Average = 80

Main Ideas in Class Today

- Graphing:
 - Position
 - Velocity
 - Acceleration

Feel free to ask Quiz 1 Q's today or Wednesday (Monday will be a full day)

Next Quiz Wednesday

Practice Problems: No odd ones for graphing 2.6, 2.8, 2.20, 2.29, 2.31, 2.33, 2.37, 2.39, Conceptual Problem 2.9

Graphing Position, Velocity and Acceleration

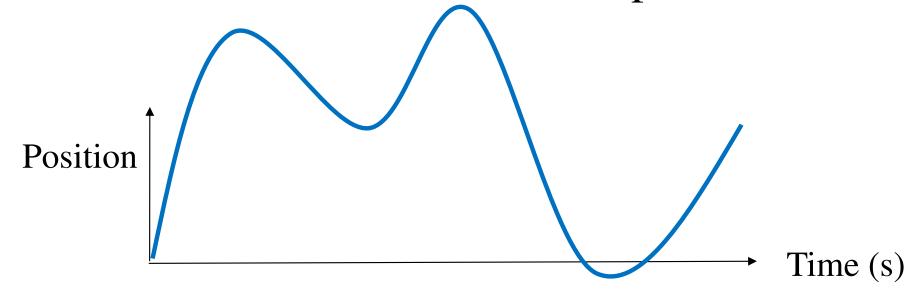
y axis = position, velocity or acceleration

Dependent variable (thing you measure)

You are doing hands on graphing work in lab

Independent variable (thing you control)

x axis = Time(s)


Position – Time Graphs Summarized

- horizontal graph segments (--) indicate that the object is "at rest"
- graph segments moving upward (/) imply movement in positive direction
- graph segments moving downward (\) imply movement in the negative direction
- <u>slope</u> of position-time graph at any instant is the instantaneous velocity
- straight line graph segments (/ or \ or --) indicate constant speed
- curving graph segments indicate changing speed (acceleration)
- graph segments becoming steeper indicate an increase in speed
- graph segments becoming less steep indicate a decrease in speed
- a change of direction is indicated whenever the graph goes through a local maximum or minimum point

Position (m)

This curve represents the position versus time.

Do we know anything about the direction(s) of motion over the shown time period?

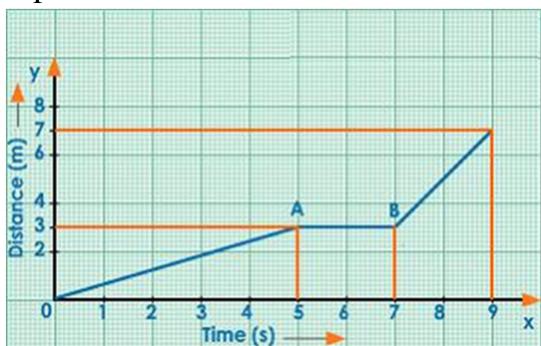
A: The object changes direction once.

B: The object changes direction twice.

C: The object changes directions three times.

D: The object changes directions four times.

E: The object does not change direction.

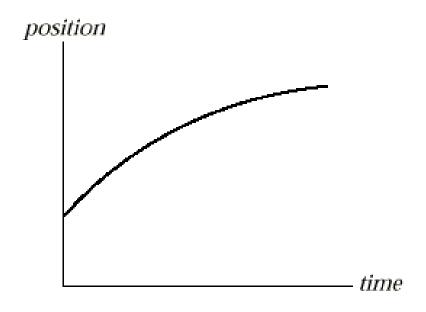

Q04

Graphing

The blue line shows the position of a person at different times.

When do they go the fastest? Calculate:

- (i) the velocity of the person as they moves for 0 to 5 s
- (ii) Instantaneous velocity at 3s
- (iii) 5 to 7 s
- (iv) 7 to 9 s
- (v) Average velocity 0 to 9 s


It's the same idea for

calculating acceleration

from velocity graphs

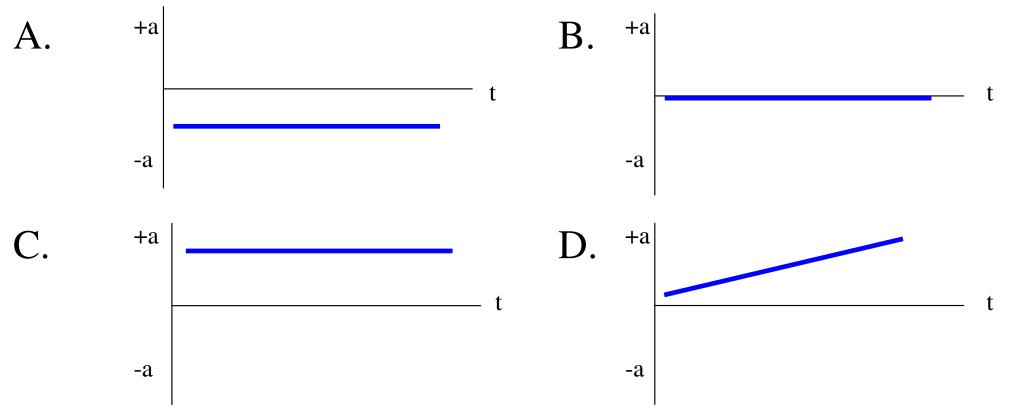
- (i) Velocity of the person as they move from 0 to 5 s = Slope of OA $=\frac{3-0}{5-0} = 0.6$ m/s Does this velocity change over that range?
- (iii) Velocity from 5 to 7 s = Slope of AB $=\frac{3-3}{7-5} = 0$ m/s
- (iv) Velocity from 7 to 9 s= $\frac{7-3}{9-7}$ = 2 m/s
- (v) Average velocity from 0 to 9 s= distance/time=7m/9s=7/9 m/s Harder if ask from 2.5s to 8 s, shall we try?

A train car moves along a long straight track. The graph shows the position as a function of time for this train. The graph shows that the train:

- A. speeds up all the time.
- B. slows down all the time.
- C. speeds up part of the time and slows down part of the time.
- D. moves at a constant velocity.

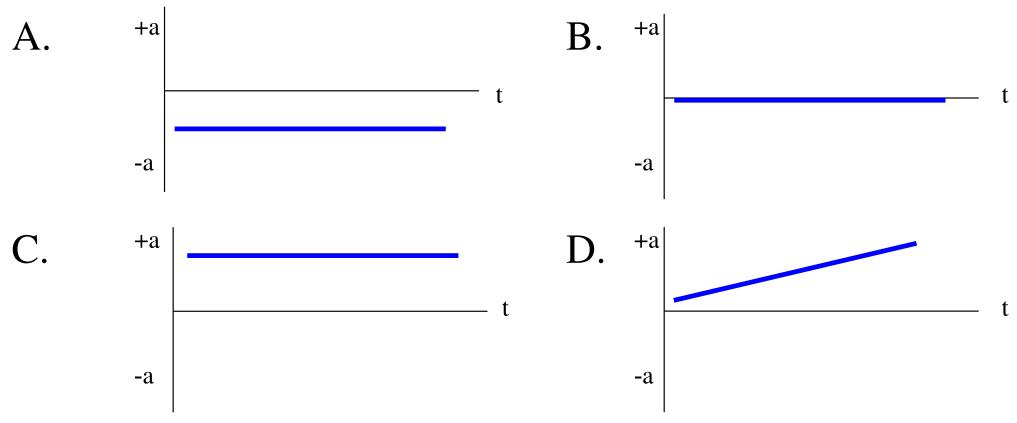
Velocity – Time Graphs Summarized

- the slope of a velocity-time graph is the acceleration
- horizontal graph segments indicate that the object has constant velocity
- graph segments above the x-axis imply movement in the positive direction
- graph segments below the x-axis imply movement in the negative direction
- horizontal segments on the x-axis indicate no movement
- straight line graph segments indicate constant acceleration (--, / or \)
- graph segments moving upward indicate an increase in velocity (/)
- graph segments moving downward indicate a decrease in velocity (\)
- a change of direction is indicated whenever the graph crosses the x-axis
- an increase in *speed* (magnitude of velocity) is indicated by graph segments moving away from the x-axis


Acceleration – Time Graphs Summarized

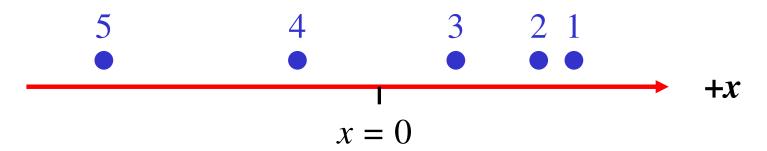
- horizontal graph segments indicate that the object has constant acceleration
- a horizontal graph segment on the x-axis indicates that the object has constant velocity (zero acceleration)
- graph segments above the x-axis imply increasing velocities
- graph segments below the x-axis imply decreasing velocities
- no changes in direction may be inferred from these graphs

Acceleration (m/s²)


At the introductory physics level, we typically only deal with constant acceleration situations, so acceleration graphs generally consist of horizontal segments only.

An object is **speeding up uniformly in the** *positive* **direction**. Which of the following represents this motion?

An object is **speeding up uniformly in the <u>negative</u> direction**. Which of the following represents this motion?


Clicker Answers

Chapter/Section: Clicker #=Answer

Ch.2B: 4=D, 5=B, 6=C, 7=A

Not a graphing question, but the next part will be

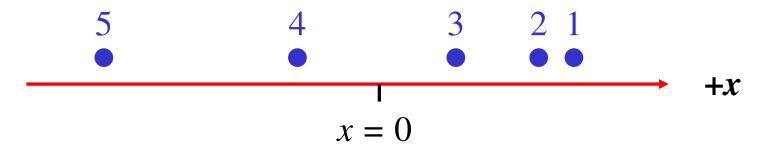
This is a motion diagram of an object moving along the x-direction with constant acceleration. Starting with 1, the dots 1, 2, 3, ... show the position of the object at equal time intervals Δt .

At the time labeled 3, what are the signs of the object's velocity v_x and acceleration a_x ?

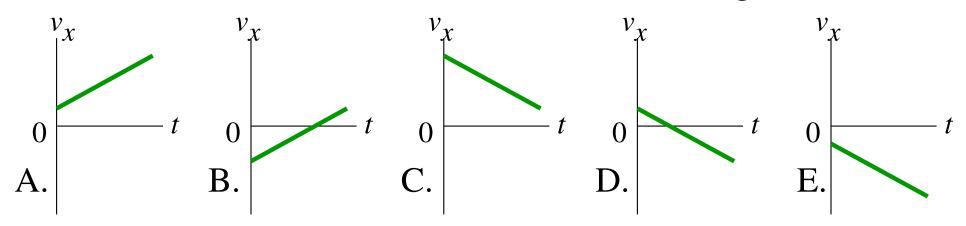
A.
$$v_x < 0$$
, $a_x = 0$

B.
$$v_x < 0$$
, $a_x > 0$

C.
$$v_x < 0$$
, $a_x < 0$


D.
$$v_x > 0$$
, $a_x > 0$

E.
$$v_x > 0$$
, $a_x < 0$

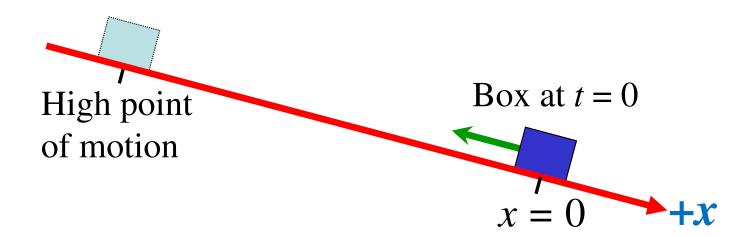


This is a motion diagram of an object moving along the x-direction with constant acceleration. Starting with 1, the dots 1, 2, 3, ... show the position of the object at equal time intervals Δt .

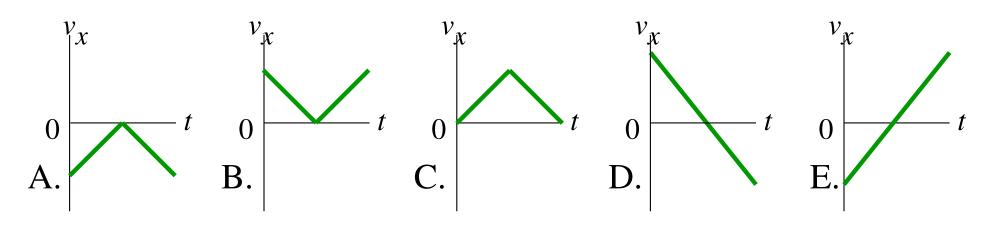
Which of the following *velocity versus time* graphs best matches the motion shown in the motion diagram?

What you learn from graphs?

Type of graph	Slope gives:	Change of direction
Position vs Time	Velocity	At maximum or minimum
Velocity vs Time	Acceleration	When curve crosses axis
Acceleration vs Time		Can't determine


Integration (calculus) lets you find the area under a curve (which does give information), but we won't be doing that

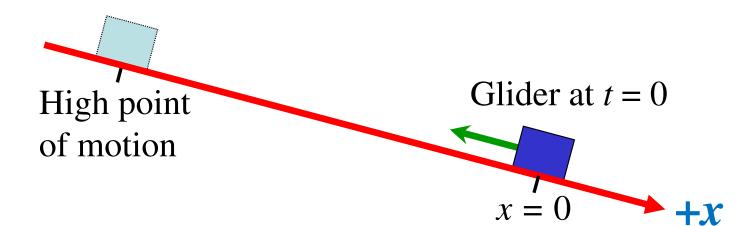
The next two are harder, talk to neighbors

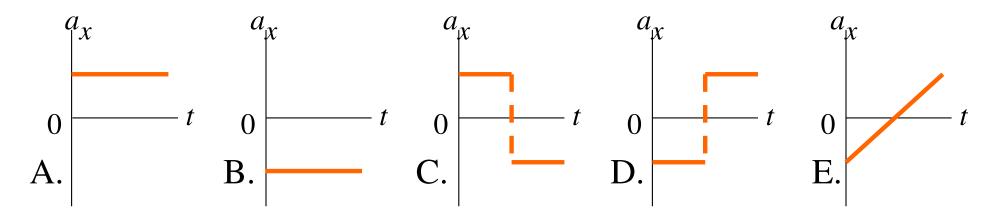


A box is on an inclined, frictionless track. The *positive x direction* points downhill. At t = 0 the box is at x = 0 and moving uphill.

After reaching the high point of its motion, it moves downhill and returns to x = 0.

Which of the following graphs of velocity versus time best matches the motion of the box?




A box is on an inclined, frictionless track. The x-axis points downhill. At t = 0 the box is at x = 0 and moving uphill.

Q11

After reaching the high point of its motion, it moves downhill and returns to x = 0.

Which of the following a_x –t graphs (graphs of acceleration vs. time) best matches the motion of the box?

Clicker Answers

Chapter/Section: Clicker #=Answer 4=D, 5=B, 6=C, 7=A, 8=C, 9=E